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Abstract. We investigate the set Vf of horizontal critical points of a poly-

nomial function f for the standard Engel structure defined by the 1-forms
ω3 = dx3 −x1dx2, ω4 = dx4 −x3dx2, endowed with the sub-Riemannian met-

ric gSR = dx2
1 + dx2

2. For a generic polynomial, we show that the intersection
of any fiber of f and Vf does not contain a horizontal curve. Then we prove

that each trajectory of the horizontal gradient of f approaching the set Vf has

a limit.

1. Introduction

An Engel structure ∆ is a non-integrable distribution of rank 2 on a 4-
dimensional manifold which satisfies the following conditions:

rank[∆,∆] = 3,
rank[∆, [∆,∆]] = 4,

where [., .] denotes the Lie bracket. Engel structures are stable (or generic) in
the sense that all C2-small perturbation of an Engel structure is still an Engel
structure. A manifold with an Engel structure is called an Engel manifold. In
this paper, we will deal with the standard Engel structure on R4, defined by the
1-forms ω3 = dx3−x1dx2 and ω4 = dx4−x3dx2, which is generated by the following
vector fields: 

X1 =
∂

∂x1

X2 =
∂

∂x2
+ x1

∂

∂x3
+ x3

∂

∂x4

We denote by ∆ this Engel structure. By a result of Engel [9], at each point of
an Engel manifold, there exists a neighborhood with local coordinates x1, x2, x3, x4

such that the Engel structure is generated by the vector fields X1, X2 above. So
locally, all Engel structures are isomorphic.

Let us fix gSR = dx2
1 + dx2

2, a sub-Riemannian metric on ∆ for which the

system {X1, X2} is orthonormalized. Let X3 =
∂

∂x3
, X4 =

∂

∂x4
. Then g = dx2

1 +

dx2
2+ω2

3 +ω2
4 is the Riemannian metric on R4 extending gSR and making the system
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{X1, X2, X3, X4} orthonormalized. The pair (∆, gSR) is called a sub-Riemannian
structure on R4.

We refer to [1, 3, 6, 10, 12, 16, 24, 25, 27, 28] for further informations about
subriemannian geometry and Engel structures.

Let Rd[x] := {f ∈ R[x],deg f ≤ d}, the set Rd[x] is furnished a structure of
finite dimensional vector space. We may identify a polynomial f ∈ Rd[x] with its
coefficient vector and identify Rd[x] with RdimRd[x]. So Rd[x] is endowed with the
usual topology of RdimRd[x]. For each f ∈ Rd[x], we can associate a vector field
∇hf , called horizontal gradient of f , which is the projection of the Riemannian
gradient∇f on the distribution ∆ with respect to the metric gSR. In the coordinate
system {X1, X2, X3, X4},

∇f =

4∑
i=1

(Xif)Xi.

By definition

∇hf = (X1f)X1 + (X2f)X2.

For convenience, we will sometimes identify∇hf with the map x 7→ (X1f(x), X2f(x)).
The notion of horizontal gradient appeared in some recent works [2, 22] on the
Carnot groups. Denote

Vf = {∇hf = 0}
the set of horizontal critical points of f . Note that if x ∈ Vf , then either x is
a riemannian critical point of f , i.e., ∇f(x) = 0, or ∆x ⊂ Txf−1(f(x)).

Definition 1.1. An almost everywhere differentiable curve γ : (t1, t2) → R4 is
called a horizontal curve if its derivative γ̇(t) is almost everywhere contained in
∆γ(t).

Let us firstly recall the  Lojasiewicz gradient inequality [4, 7, 18, 19, 20] for Rie-
mannian gradient ∇f . This inequality is an important tool to study the trajectories
of ∇f . Assume that f is an analytic function and ∇f(x0) = 0, then the  Lojasiewicz
gradient inequality says that in a neighborhood U0 of x0,

||∇f(x)|| ≥ C|f(x)− f(x0)|α,

for some 0 < α < 1 and C > 0. As a consequence, in [19, 21],  Lojasiewicz proved
that locally the length of each trajectory x(t) of ∇f is bounded uniformly, hence
the limit lim

t→∞
x(t) exists, i.e., if x(tm) → x0 for some sequence tm → ∞, then

x(t)→ x0 as t→∞.
In [8], we have consider the trajectories of the horizontal gradient for a class

of codimension one distribution, called splitting distribution, on Rn. This class
contains, in particular, contact structures. We have noticed that the  Lojasiewicz
gradient inequality does not hold for horizontal gradient and some new phenomena
appear, for example, a trajectory of the horizontal gradient may have unbounded
length or accumulate to a cycle. This presents a major obstruction to the study
of the horizontal gradient’s trajectories since the techniques of  Lojasiewicz do not
apply to the horizontal gradient. It turns out that to overcome this difficulty, we
have to study the restriction of the function on its set of horizontal critical points
f |Vf . The conclusion is that for a generic polynomial, the restriction f |Vf is a
Morse function and the behavior of the trajectories of horizontal gradient is similar
to those of Riemannian gradient.
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Dealing with the standard Engel structure ∆ above, in general, the  Lojasiewicz
gradient inequality does not hold for horizontal gradient. In fact, if Vf 6= ∅ and
f |Vf is a non constant function, then we can not have the  Lojasiewicz gradient
inequality. Now studying f |Vf is not sufficient to understand the behavior of the

trajectories of ∇hf , and it turns out that the set Γf of points in Vf , where Vf
is not transverse to the distribution, plays an important role in the study of the
trajectories of ∇hf .

The paper is organized as follow. In the second section, we recall some basic
notions and results of semi-algebraic geometry. In the third part, we study the
generic properties of the dimension of Vf . On the generic dimension of Vf , we
obtain the following.

Theorem 3.1. Generically, Vf is smooth and of dimension 2 or is empty, i.e., the
set

Kd = {f ∈ Rd[x] : Vf is smooth of dimension 2 or is empty}
contains a semi-algebraic open dense set in Rd[x].

The proof of this result is based on the transversality theorem with parameters.
It’s quite similar to the proof of Theorem 4.4 in [8].

Set

Γf := {x ∈ Vf : TxVf ∩∆x 6= {0}}.
The following result plays an important role in the study of the trajectories of
horizontal gradient.

Theorem 4.1. Generically, the set Γf is a smooth algebraic curve or an empty set,
moreover, Γf does not have a connected component which is contained in a fiber of
f , i.e., the set

Md = {f ∈ Rd[x] : Γf is a smooth algebraic curve or an empty set and does not
have a connected component contained in a fiber of f

contains a semi-algebraic open dense set in Rd[x].
In the last part, we show that

Theorem 5.1. Generically, the trajectories of ∇hf in a compact set B have a
limit, i.e., the set

Nd = {f ∈ Rd[x] : the trajectories of ∇hf have a limit on ∂B ∪ Vf}

contains a semi-algebraic open dense set in Rd[x].

2. Briefs on transversality and semi-algebraicity

We recall some principal definitions and results of transversality and semi-algebraicity.
We refer to [11, 13, 15, 4, 5, 7, 17, 18, 19] for more details. Let X,Y, Z, P be some
C∞ manifolds. Let S be a C∞ submanifold of Y . Let f : X → Y be a C∞ map.
Denote C∞(X,Y ), the set of C∞ maps from X to Y .

Definition 2.1. We say that f is transverse to S if f(X) ∩ S = ∅ or for each
x ∈ f−1(S), we have

dxf(TxX) + Tf(x)S = Tf(x)Y.

Note that if f is a submersion, then it is transverse to all submanifolds of Y.
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Proposition 2.2. [13] If f t S, then the inverse image f−1(S) of S is a subman-
ifold of X. Moreover, if codimY S ≤ dimX and f(X) ∩ S 6= ∅, then

codimXf
−1(S) = codimY S.

If codimY S > dimX, then f t S if and only if f(X) ∩ S = ∅; in this case, the
transversality implies codimXf

−1(S) < codimY S.

Definition 2.3. A semi-algebraic set of Rn is a subset of Rn defined by a finite
sequence of polynomial equations and inequalities with real coefficients, or any finite
union of such sets. In other words, the semi-algebraic subsets of Rn form the
smallest class SAn of subsets of Rn such that:

1. If P ∈ R[x1, . . . , xn], then {x ∈ Rn : P (x) = 0} ∈ SAn and {x ∈ Rn : P (x) >
0} ∈ SAn.

2. If A ∈ SAn and B ∈ SAn, then A ∩B, A ∪B and Rn −A are in SAn.

Theorem 2.4. [5] Let A ⊂ Rn be a semi-algebraic set. If A is dense in Rn, then
there exists a set B which is semi-algebraic open dense in Rn such that B ⊂ A.

Let us recall the following theorem on the semi-algebraic local triviality of semi-
algebraic mappings.

Theorem 2.5. [14] Let A ⊂ Rn and B ⊂ Rm be some semi-algebraic sets. Let
f : A → B be a semi-algebraic map. Then there is a (dimB − 1)-dimensional
semi-algebraic subset C of B such that, for each connected component U of B−C,
the restriction f |f−1(U) → U is a semi-algebraic fibration.

We finish this part by recalling the following transversality theorem with param-
eters.

Theorem 2.6. [11, 13] (Transversality theorem with parameters) Let F : P ×X →
Y be a C∞ map. Set fp = F (p, .) : X → Y . If F t S, then the set

D = {p ∈ P : fp t S}
is open dense in P . Moreover, if X,Y, S, P are semi-algebraic sets and if F is a
semi-algebraic map, then D is also semi-algebraic.

Proof. The proof of openness and density of D is done in [11, 13]. The method
used also permits to prove that D is semi-algebraic if X,Y, S, P and F are semi-
algebraic. �

3. Generic horizontal critical set

In this part, we study the generic dimension of Vf .

Theorem 3.1. Generically, Vf is smooth and of dimension 2 or is empty, i.e., the
set

Kd = {f ∈ Rd[x] : Vf is smooth of dimension 2 or is empty}
contains a semi-algebraic open dense set in Rd[x].

Proof. Let us write a polynomial f ∈ Rd[x] as follows

f = α0 +

4∑
i=1

αixi + g

where g does not have the linear part. Then
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X1f = α1 +X1g,
X2f = α2 + α3x1 + α4x3 +X2g.

We identify f ∈ Rd[x] with its coefficient vector. Set

L : Rd[x]× R4 → R2

(f, x) 7→ ((X1f)(x), (X2f)(x)).

The Jacobian matrix of L contains the following matrix

(
∂L

∂α1
,
∂L

∂α2
) =

(
1 0
0 1

)
.

This implies that L is a submersion. Consequently, L is transverse to {0} ⊂ R2.
By Theorem 2.6, the set

K ′d := {f ∈ Rd[x] : ∇hf = L(f, .) t {0}} (1)

is semi-algebraic open dense in Rd[x]. For each f ∈ K ′d, by Proposition 2.2 and by
this transversality, Vf is smooth and if Vf 6= ∅, then codimVf = codimR2{0} = 2,
so dimVf = 2. Therefore K ′d ⊂ Kd. This ends the proof of the theorem. �

Proposition 3.2. Generically, the map ∇hf : R4 → R2 is a submersion on Vf ,
i.e., the set

Ld := {f ∈ Rd[x] : ∇hf is submersive on Vf}
contains a semi-algebraic open dense set in Rd[x].

Proof. For every f ∈ K ′d, where K ′d is defined by (1), the transversality condition
∇hf t {0} implies that ∇hf is a submersion on (∇hf)−1({0}), i.e., on Vf . �

If f is an affine form f =

4∑
i=1

αixi+α0, then X1f = α1, X2f = α2 +α3x1 +α4x3.

So if α1 6= 0, then Vf is empty. Let K ′′1 := {f ∈ R1[x] : α1 6= 0}. It is clear that K ′′1
is semi-algebraic open dense in R1[x] and K ′′1 ⊂ K1. Then we have the following
result for the affine case.

Proposition 3.3. Generically, Vf is empty for f ∈ R1[x], i.e., the set

K1 = {f ∈ R1[x] : Vf is empty}

contains a semi-algebraic open dense set in R1[x].

4. Genericity of Γf

From now on, we denote Xi1i2...ikf := Xi1(Xi2(. . . (Xikf) . . .)) for f ∈ Rd[x].
We still write a polynomial f ∈ Rd[x] under the following form

f =

4∑
i=1

αixi +
1

2

4∑
i,j=1

βijxixj + g,

where g does not contain monomials of degree 1, 2. Recall that

Γf := {x ∈ Vf : TxVf ∩∆x 6= {0}}, (2)

the set of points in Vf where Vf is not transverse to the distribution.
The goal of this section is to prove the following result.
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Theorem 4.1. Generically, the set Γf is a smooth algebraic curve or an empty set,
moreover, Γf does not have a connected component which is contained in a fiber of
f , i.e., the set

Md = {f ∈ Rd[x] : Γf is a smooth algebraic curve or an empty set and does not
have a connected component contained in a fiber of f

(3)
contains a semi-algebraic open dense set in Rd[x].

In the case d = 1, the proof of Theorem 4.1 is trivial since Vf = ∅ for all

f = α0 +

4∑
i=1

αixi with α1 6= 0. So assume that d ≥ 2. First of all, we characterize

the set of horizontal curves contained in the fibers of f .
The first statement of Theorem 4.1 is proven by the following lemma.

Lemma 4.2. There exists a semi-algebraic open dense set Bd ⊂ Rd[x] such that
for every f ∈ Bd, the set Γf is a smooth algebraic curve or an empty set.

Proof. Consider the map

Θ : R4 × Rd[x] → R2 ×M2

(x, f) 7→ (X1f(x), X2f(x), X11f(x), X21f(x), X22f(x), X12f(x)),

where M2
∼= R4 is the space of 2× 2 matrices. The Jacobian matrix of Θ contains

the following matrix

∂Θ

∂(α1, α2, β11, β12, β22, α3)
=


1 0 x1 x2 0 0
0 1 0 x1 x2 x1

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 1 0 1

 ,

whose rank is 6. Therefore, Θ is a submersion and hence is transverse to {(0, 0)}×Σ2

where Σ2 is the algebraic subset of M2, constituted of degenerate matrices. Denote
by 0I2 the zero matrix in M2. Note that 0I2 is the only singular point of Σ2. By
Transversality theorem with parameters 2.6, the sets

B1
d := {f ∈ Rd[x] : Θ(., f) t {(0, 0)} × (Σ2 − {0I2})},

B2
d := {f ∈ Rd[x] : Θ(., f) t {(0, 0)× 0I2}}

are semi-algebraic open dense in Rd[x]. For every f ∈ B2
d, by Proposition 2.2,

we deduce that (0, 0) × 0I2 6∈ ImΘ(., f). Let f ∈ Bd := B1
d ∩ B2

d. We have
Θ(., f) t {(0, 0)}× (Σ2−{0I2}) and ImΘ(., f) does not contain the singular point
{(0, 0) × 0I2}. Finally, by Proposition 2.2, the set (Θ(., f))−1({(0, 0)} × Σ2) is
smooth and if it is not empty, we have

codimR4(Θ(., f))−1({(0, 0)} × Σ2) = codimR6{(0, 0)} × Σ2 = 3.

Hence dim(Θ(., f))−1({(0, 0)} × Σ2) = 1. Note that x ∈ (Θ(., f))−1({(0, 0)} × Σ2)
if and only if dx(∇hf)|∆x

is degenerate, hence if and only if TxVf ∩∆x 6= {0}. This
ends the proof of the lemma.

�
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Remark 4.3. Is is easy to check that the condition that dx(∇hf)|∆x is degenerate
gives

Γf = {x ∈ R4 : X1f = X2f = X11fX22f −X21fX12f = 0}. (4)

Remark 4.4. If deg f ≤ d, then

(i) degX1f ≤ d− 1, degX2f ≤ d,
(ii) degX11f ≤ d− 2, degX21f ≤ d− 1, degX12f ≤ d− 1, degX22f ≤ d.

Hence by [23, 26], the number of connected components of Γf is bounded by c(d) :=
2(d− 1)[4(d− 1)− 1]3.

By classical Morse theory, we have

Lemma 4.5. There exists a semi-algebraic open dense set Jd ⊂ Rd[x] such that
for every f ∈ Jd, the set of critical points of f

Cr(f) := {∇f = (X1f,X2f,X3f,X4f) = 0}

is finite.

Now we have the following constrain on the intersection Vf ∩ f−1(t).

Lemma 4.6. Let f ∈ Id = Bd ∩ Jd, then for every t, the intersection Vf ∩ f−1(t)
contains only curves (smooth or not) and points, i.e., dim(Vf ∩ f−1(t)) ≤ 1.

Proof. Suppose that dim(Vf ∩ f−1(t)) > 1 for some t. Let S ⊂ Vf ∩ f−1(t) be a
smooth surface of dimension 2. Since the number of critical points of f is finite, we
may assume that S does not contain any critical point of f . By the proof of Lemma
4.2, it follows that Bd ⊂ Kd where Kd is defined in Theorem 3.1, so dimVf = 2.
For each x ∈ S, we have TxVf = TxS ⊂ Txf−1(f(x)) and ∆x ⊂ Txf−1(f(x)). Note
that dim ∆x = 2 and dimTxf

−1(f(x)) = 3, so TxVf ∩ ∆x 6= {0}. Hence x ∈ Γf .
It follows that S ⊂ Γf . This contradicts to the fact that Γf is a smooth curve for
every f ∈ Bd. The lemma is proved. �

If that Γf has a connected component which is contained in a fiber of f , then
we can calculate the tangent vector of this component as follows.

Proposition 4.7. Let f ∈ Id = Bd ∩ Jd. Assume that γ is a connected component
of Γf which is contained in a fiber of f . Then for x ∈ γ,

ξf (x) = −[X21f(x)]X1 + [X11f(x)]X2 (5)

is a tangent vector of γ at x.

Proof. Note that by Lemma 4.6 and by assumption, γ is a component of Vf ∩f−1(t)
for some t. Now (dx(∇hf, f − t))(ξf (x)) = X11f X21f X31f X41f

X12f X22f X32f X42f
0 0 X3f X4f


x

.


−X21f
X11f

0
0


x

=

 0
X11fX22f −X12fX21f

0


x

.

Then (dx(∇hf, f − t))(ξf (x)) = 0 by Remark 4.3, for all x ∈ γ. This implies that
ξf (x) is a tangent vector of Vf ∩ f−1(t) at x. Hence ξf (x) is a tangent vector of γ
at x. �
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The vector ξf (x) does not give a tangent direction of a connected component of
Γf which is contained in a fiber of f if ξf (x) = 0. So we are going to show that for
a generic polynomial, ξf (x) 6= 0 on Γf excepted at finitely many points.

Recall that Γf = {x ∈ R4 : X1f = X2f = X11fX22f −X21fX12f}. Let

Ω1
f := {x ∈ Γf : X11f = 0}

= {x ∈ R4 : X1f = X2f = X11fX22f −X21fX12f = X11f = 0}
= {x ∈ R4 : X1f = X2f = X11f = X21fX12f = 0}
= {x ∈ R4 : X1f = X2f = X11f = X21f = 0}∪

{x ∈ R4 : X1f = X2f = X11f = X12f = 0}
=: S1

f ∪ S2
f ,

Ω2
f := {x ∈ Γf : X21f = 0}

= {x ∈ R4 : X1f = X2f = X11fX22f −X21fX12f = X21f = 0}
= {x ∈ R4 : X1f = X2f = X21f = X11fX22f = 0}
= {x ∈ R4 : X1f = X2f = X21f = X11f = 0}∪

{x ∈ R4 : X1f = X2f = X21f = X22f = 0}
=: S1

f ∪ S3
f .

By using the same technique used in the proof of Lemma 4.2, we can prove that
there exists a semi-algebraic open dense set Dd ⊂ Rd[x] such that for each f ∈ Dd,
each of the sets S1

f , S
2
f , S

3
f are finite. Then, we have the following:

Lemma 4.8. There exists a semi-algebraic open dense set Dd ⊂ Rd[x] such that
for every f ∈ Dd, the set Ωf = Ω1

f ∪ Ω2
f is finite, so ξf (x) 6= 0 for x 6∈ Ωf .

Let

Gf := X11fX22f −X21fX12f. (6)

Then by (4), Γf = {X1f = X2f = Gf = 0}.
Now we are able to describe numerically the condition of tangency of Γf to a

fiber of f .

Lemma 4.9. Let f ∈ Id ∩Dd. Let x ∈ Γf − (Ωf ∪Cr(f)) where Cr(f) is still the
set of critical points of f , which is finite. Then [dx(Gf)](ξf (x)) = 0 if and only if
Γf is tangent to the fiber f−1(f(x)) at x.

Proof. Note that ξf (x) 6= 0 and ξf (x) is a tangent vector of Vf ∩ f−1(f(x)) at x.
Suppose that [dx(Gf)](ξf (x)) = 0. Let us prove that ξf (x) is a tangent vector

of Γf at x. We have [dx(X1f,X2f,Gf)](ξf (x)) =

=

 X11f X21f X31f X41f
X12f X22f X32f X42f
X1G X2G X3G X4G


x


−X21f
X11f

0
0


x

=

 0
Gf(x)

[dx(Gf)](ξf (x))

 .

Hence [dx(X1f,X2f,Gf)](ξf (x)) = 0, which means that ξf (x) is a tangent vector
of Γf at x. Therefore, Γf is tangent to the fiber f−1(f(x)) at x.

Now suppose that Γf is tangent to the fiber f−1(f(x)) at x. Let η be a non-zero
tangent vector of Γf at x, then [dx(Gf)](η) = 0. Since Γf ⊂ Vf , then η ∈ TxVf . On
the other hand, by the assumption, it follows that η ∈ Txf−1(f(x)). Consequently,
η ∈ Tx(Vf ∩ f−1(f(x))). Moreover, the two non-zero vectors η and ξf (x) have to
be linearly dependent. This implies that [dx(X1f,X2f,Gf)](ξf (x)) = 0. �
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For f ∈ Rd[x], we define the norm

||f || := (
∑
i

c2i )
1/2

where ci is a coefficient of f and the sum is taken over the set of coefficients of f .
Then the distance between f, h ∈ Rd[x] is defined by ||f − h||.

Let π : R4 × Rd[x] → Rd[x] be the projection map. Let S := Θ−1({(0, 0)} ×
Σ2) where Θ is defined in Lemma 4.2 and Σ2 is still the algebraic subset of M2,
constituted of degenerate matrices. Note that if (x, f) ∈ S, then x ∈ Γf . Let πS
be the restriction of π on S, then a fiber (πS)−1(f) of πS is just Γf × {f}. By
Theorem 2.5, there exists a semi-algebraic subset Z of codimension 1 of Rd[x] such
that f is a semi-algebraic locally trivial fibration over each connected component
of Td := Rd[x]− Z. It is clear that Td contains a semi-algebraic open dense subset
of Rd[x]. Let Ad ⊂ Id ∩ Td such that Ad is semi-algebraic open dense. Now fix a
polynomial f ∈ Ad. The set Vf is algebraic, smooth, dimVf = 2 or Vf is empty,
moreover Γf is algebraic, smooth, dimΓf = 1 or Γf is empty. Suppose that Γf 6= ∅.

For each f ∈ Ad ∩Dd, since Γf is an algebraic set, it has only a finite number of
connected components Γ1

f , . . . ,Γ
s
f , this number is bounded uniformly by c(d) where

c(d) is the constant defined in Remark 4.4. Let κ(f) be the number of connected
components of Γf such that each of them is contained in a fiber of f (not necessarily
the same) and let λ(f) be the number of connected components of Γf which are
not contained in any fiber of f . So λ(f) +κ(f) ≤ c(d). Now let us fix a polynomial
f ∈ Ad ∩Dd. Suppose that κ(f) > 0. Denote ε := (α, β, γ) and set

fε := f + αx2 +
β

2
x2

2 + γx4, (7)

a perturbation of f by a form of degree 2. Let |ε| := max{|α|, |β|, |γ|} be the ”size”
of the perturbation. If ε is small enough, by the triviality given by Theorem 2.5,
for each connected component θ of Γf , there exists a connected component θε of
Γfε which is close to θ. We call θε the connected component corresponding to θ.

The following lemma is the key to prove the density in the theorem 4.1.

Lemma 4.10. There exists ε = (α, β, γ) such that λ(fε) > λ(f). Moreover

λ(ftε) = λ(f(tα,tβ,tγ)) > λ(f)

for every t ∈ (0, 1].

Proof. We write Γf =

λ(f)⋃
i=1

Γi ∪
λ(f)+κ(f)⋃
i=λ(f)+1

Γi, where

(i) Γ1
f , . . . ,Γ

λ(f)
f are the connected components of Γf which are not contained

in any fiber of f ,

(ii) Γ
λ(f)+1
f , . . . ,Γ

λ(f)+κ(f)
f are the connected components of Γf which are con-

tained in a fiber of f (not necessarily the same).

By Lemma 4.9, it follows that ξf (x) 6= 0 and [dx(Gf)](ξf (x)) = 0 for every

x ∈
λ(f)+κ(f)⋃
i=λ(f)+1

Γi − (Ωf ∪ Cr(f)), recall that ξf (x) is defined by (5).

Let us fix θ = Γ
λ(f)+1
f , a connected component of Γf which is contained in a

fiber of f . We look for a perturbation fε satisfying the following conditions:
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(c1) The connected component θε of Γfε corresponding to θ is not contained in
any fiber of fε.

(c2) The connected components of Γfε corresponding to Γ1
f , . . . ,Γ

λ(f)
f are not

contained in any fiber of fε neither.

Firstly we establish (c1). By Lemma 4.8, the set Ωf is finite. Since f ∈ Jd,
by Lemma 4.5, f is a Morse function, then Cr(f) is finite. Consequently, θ −
(Ωf ∪ Cr(f)) 6= ∅. Let us take a point b = (b1, b2, b3, b4) ∈ θ − (Ωf ∪ Cr(f)). Let
ε = (α, β, γ) be a solution of the following system of equations:{

α+ b2β + b3γ = 0
β + b1γ = 0

⇔
{
α = −b2β − b3γ = (b1b2 − b3)γ
β = −b1γ

such that γ 6= 0. Note that by choosing γ small, we can make the size of ε arbitrary

small. Recall that X3 =
∂

∂x3
, X4 =

∂

∂x4
. Now we have

Xifε = Xif for i ∈ {1, 3, 4},
X2fε = X2f + α+ βx2 + γx3,
Xijfε = Xijf for (i, j) ∈ {1, 4} × {1, 4}, (i, j) 6= (2, 2), (3, 2),
X22fε = X22f + β + γx1.

We remark the following properties.

Claim 4.11. The perturbation fε fixes the point b in Γf , i.e., b ∈ Γfε .

Proof. We have

Gfε = X11fεX22fε−X21fεX12fε = X11f(X22f+β+γx1)−X21fX12f = Gf+(β+γx1)X11f.

By our choice of ε, it is easy to see that X1fε(b) = X2fε(b) = Gfε(b) = 0. This
proves the claim. �

Claim 4.12. The connected component θε of Γfε which contains b is not contained
in any fiber of fε. In fact θε tb f−1

ε (fε(b)).

Proof. First of all, we prove that b 6∈ Ωfε ∪ Cr(fε). Since Xifε(b) = Xif(b) for
i = 1, 2, 3, 4, we deduce that ∇fε(b) = ∇f(b) where ∇fε and ∇f denote respectively
the (Riemannian) gradient of fε and f . Since b 6∈ Cr(f), b is not a (Riemannian)
critical point of f and hence b is not a (Riemannian) critical point of fε. This
implies that f−1

ε fε((b)) is smooth at b. Moreover Tbf
−1
ε fε((b)) = Tbf

−1f((b)). On
the other hand, since Xijfε(b) = Xijf(b) (i = 1, 2, 3, 4, j = 1, 2) by our choice of ε,
it follows that db(∇hf) =(
X11f X21f X31f X41f
X12f X22f X32f X42f

)
b

=

(
X11fε X21fε X31fε X41fε
X12fε X22fε X32fε X42fε

)
b

= db(∇hfε).

Hence TbVf = Kerdb(∇hf) = Kerdb(∇hfε) = TbVfε . Note that X11fε(b) =
X11f(b) 6= 0 and X21fε(b) = X21f(b) 6= 0, consequently, b 6∈ Ωfε . So b 6∈ Ωfε ∪
Cr(fε).

Now by Lemma 4.9, it is sufficient to show that [db(Gfε)](ξfε(b)) 6= 0. Note that

Gfε = Gf + (β + γx1)X11f,

ξfε = −(X21fε)X1 + (X11fε)X2 = −(X21f)X1 + (X11f)X2 = ξf
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Hence

[db(Gfε)](ξfε(b)) = [db(Gf + (β + γx1)X11f)](ξf (b))
= [db(Gf)](ξf (b)) + [db{(β + γx1)X11f}](ξf (b))
= [db(Gf)](ξf (b)) + [(β + γx1)d(X11f)

+(X11f)d{(β + γx1)}]b(ξf (b))
= [db(Gf)](ξf (b)) + (β + γb1)[db(X11f)](ξf (b))

+(X11f(b))[db(β + γx1)](ξf (b)).
= [db(Gf)](ξf (b)) + (β + γb1)[db(X11f)](ξf (b))
−γ[X11f(b)].[X21f(b)].

(8)

Since [db(Gf)](ξf (b)) = 0 by our initial setting and (β + γb1) = 0 by our choice of
ε, it follows from Lemma 4.8 that [db(Gfε)](ξfε(b)) = −γ[X11f(b)].[X21f(b)] 6= 0
for ε 6= 0. This ends the proof of the claim. �

So with Claim 4.12, we have established (c1). Now we try to establish (c2). To
do so, the following claim is sufficient.

Claim 4.13. For each i = 1, . . . , λ(f), let Γifε be the connected component of Γfε
corresponding to Γif . There exists a constant 0 < δ such that if |ε| ≤ δ, then Γifε is
not contained in any fiber of fε.

Proof. Since Γif is not contained in any fiber of f , it follows that Γif is almost

everywhere transverse to the fibers of f . By Lemma 4.8, the set Ωf ∪Cr(f) is finite.
Hence, we can choose a point ai ∈ Γif − (Ωf ∪Cr(f)) such that Γif tai f

−1(f(ai)).

By Lemma 4.9, [dai(Gf)](ξf (ai)) 6= 0. Let

m1 := min
i=1,...,s1

|[dai(Gf)](ξf (ai))| > 0.

Let ζ > 0 such that B(ai, ζ) ∩ {|[d(Gf)](ξf )| ≤ 3m1

4
} = ∅ where B(ai, ζ) := {x ∈

R4 : ||x− ai|| ≤ ζ}. Set

m2 := max
i=1,...,s1;x∈B(ai,ζ)

|[dx(X11f)](ξf (x))| < +∞,

m3 := max
i=1,...,s1;x∈B(ai,ζ)

|X11f(b)|.|X21f(b)| < +∞,

m4 := max
i=1,...,s1;x∈B(ai,ζ)

||x− b|| < +∞.

Note that m3,m4 > 0. Let r > 0 such that

r ≤

 min{ m1

4m2m4
,
m1

4m3
} if m2 6= 0

m1

4m3
if m2 = 0.

and such that for |ε| < r, fε ∈ Ad∩Dd and the intersection B(ai, ζ)∩Γifε is a curve.

Since the set Ωfε ∪ Cr(fε) is finite, we can choose a point σi = (σi1, σi2, σi3, σi4) ∈
B(ai, ζ)∩Γifε such that σi 6∈ Ωfε∪Cr(fε). Let us prove that [dσi(Gfε)](ξfε(σi)) 6= 0.

In fact, by the same computation as (8), we have

[dσi(Gfε)](ξfε(σi)) = [dσi(Gf)](ξf (σi)) + (β + γσi1)[dσi(X11f)](ξf (σi))
−γ[X11f(σi)].[X21f(σi)].

So

|[dσi(Gfε)](ξfε(σi))| ≥ |[dσi(Gf)](ξf (σi))| − |(β + γσi1)|.|[dσi(X11f)](ξf (σi))|
−|γ|.|X11f(σi)|.|X21f(σi)|.
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We note the following facts:

i) Since σi ∈ B(ai, ζ) and B(ai, ζ)∩{|[dσi(Gf)](ξf )| ≤ 3m1

4
} = ∅, it follows that

|[dσi(Gf)](ξf (σi))| >
3m1

4
.

ii) |(β + γσi1)|.|[dσi(X11f)](ξf (σi))| = |(−b1 + σi2)γ|.|[dσi(X11f)](ξf (σi))| ≤
m4rm2 ≤

m1

4
.

iii) |γ|.|X11f(σi)|.|X21f(σi)| ≤ rm3 ≤
m1

4
.

These imply that

|[dσi(Gfε)](ξfε(σi))| ≥
3m1

4
− m1

4
− m1

4
=
m1

4
> 0.

Then by Lemma 4.9, we deduce that Γifε tσi f
−1(fε(σi)). This ends the proof of

the claim.
�

By construction, λ(fε) ≥ λ(f)+1. Moreover, λ(ftε) ≥ λ(f)+1 for every t ∈ (0, 1].
Hence, the lemma is proved. �

Lemma 4.10 shows that, after a small appropriate perturbation fε, the number of
connected components of Γfε , which are not contained in any fiber of fε, increases.
So we obtain an important corollary as follows.

Corollary 4.14. The intersection Md ∩ Ad ∩ Dd, where Md is defined by (3), is
dense in Rd[x].

Proof. Since the number λ(f) is bounded from above by c(d), repeated applications
of Lemma 4.10 give a polynomial h ∈ Md which can be chosen arbitrarily close to
f . The corollary follows. �

The following lemma proves the semi-algebraicity of the set Md ∩Ad ∩Dd.

Lemma 4.15. The set Md∩Ad∩Dd, where Md is defined by (3), is a semi-algebraic
set.

Proof. For f ∈ Ad ∩ Dd, denote Γ1
f , . . . ,Γ

kf
f be the connected components of Γf

which are semi-algebraic sets. Then

Md ∩Ad ∩Dd = {f ∈ Ad ∩Dd : ∃σi ∈ Γif − (Ωf ∪ Cr(f)) :

[dσi(Gf)](ξf (σi)) 6= 0, i = 1, . . . , kf}.

This set is clearly a semi-algebraic set by Tarski-Seidenberg principle [4, 5, 7] and
Theorem 2.5. �

Now we have all necessary ingredients to prove the theorem 4.1.

Proof of Theorem 4.1. By Corollary 4.14 and lemma 4.15, it follows that Md ∩
Ad ∩Dd is semi-algebraic and dense in Rd[x]. Then by Theorem 2.4, Md ∩Ad ∩Dd

contains a semi-algebraic open dense set in Rd[x]. Consequently, Md contains a
semi-algebraic open dense set in Rd[x]. This completes the proof of the theorem
4.1. �

Form Theorem 4.1, we obtain the following corollary.
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Corollary 4.16. Generically, the set Vf does not contain a horizontal curve, i.e.,
the set

Pd = {f ∈ Rd[x] : Vf does not contain a horizontal curve}
contains a semi-algebraic open dense set in Rd[x].

Proof. Let f ∈ Bd ∩Md. By the proof of Lemma 4.2, it follows that Bd ⊂ Kd

where Kd is defined in Theorem 3.1, so Vf is smooth of dimension 2 or is empty.
Assume that Vf 6= ∅. Let us prove that f ∈ Pd.

By contradiction, suppose that γ ⊂ Vf is a connected horizontal curve, let γ(t) be
a parametrization of γ. Since γ(t) is almost everywhere differentiable and γ ⊂ Vf ,
we have γ̇(t) ∈ Tγ(t)Vf for almost t. On the other hand, since γ is horizontal, it
follows that γ̇(t) ∈ ∆γ(t). Hence, for almost t, we have γ̇(t) ∈ Tγ(t)Vf ∩ ∆γ(t), so
Tγ(t)Vf ∩ ∆γ(t) 6= {0}. This implies that γ(t) ∈ Γf for almost t. By the absolute
continuousness of γ(t) and the smoothness of Γf from Lemma 4.2, we have γ ⊂ Γf .

On the other side, since ∆γ(t) ⊂ Ker(dγ(t)f), we get
d

dt
[f(γ(t))] = [dγ(t)f ](γ̇(t)) = 0

for almost t. Hence f(γ(t)) = c where c is a constant, which implies that γ is
contained in the fiber f−1(c). Consequently, Γf has a connected component which
is contained in a fiber. This contradicts Theorem 4.1. The corollary is proved. �

Remark 4.17. Let f ∈ Bd∩Md, if f is non constant on each connected component
of Γf , then Vf , and hence Γf , do not contain a horizontal curve.

5. Trajectories of horizontal gradient

In this section, we prove that for a generic polynomial f , every trajectory of ∇hf
in a given compact set B always has a limit. Precisely, we will prove the following.

Theorem 5.1. Generically, the trajectories of ∇hf in B have a limit, i.e., the set

Nd = {f ∈ Rd[x] : the trajectories of ∇hf have a limit on ∂B ∪ Vf} (9)

contains a semi-algebraic open dense set in Rd[x].

Let dVf (.) be the distance function to Vf with respect to the usual Euclidean

metric on R4. By  Lojasiewicz inequality ([18]), there exist some constants C1, C2 >
0, γ ≥ 1 ≥ β > 0 such that for all x ∈ B, we have

C1d
γ
Vf

(x) ≤ ||∇hf(x)|| ≤ C2d
β
Vf

(x). (10)

We have the following lemma.

Lemma 5.2. For f ∈ Ld, where Ld is defined in Proposition 3.2, we can choose
the exponents γ = β = 1 in the  Lojasiewicz inequality (10), i.e., there exist some
constants 0 < C1 ≤ C2 such that for all x ∈ B, we have

C1dVf (x) ≤ ||∇hf(x)|| ≤ C2dVf (x). (11)

Proof. The idea of proof is similar to Lemma 5.15 in [8]. By Proposition 3.2, for
f ∈ Ld, ∇hf is a submersion on Vf . This implies that for each x ∈ Vf , the Jacobian
matrix of ∇hf : R4 → R2 is of constant rank 2. By constant rank theorem, for
all x ∈ Vf , there exist a diffeomorphism u : Ux1 → Ux from a neighborhood Ux1 of
0 ∈ R4 on a neighborhood Ux of x, u(0) = x, and a diffeomorphism w : W → W1

from a neighborhood W of 0 ∈ R2 on a neighborhood W1 of 0 ∈ R2, w(0) = 0 such
that

A(y1, y2, y3, y4) = (y1, y2)



14 SI TIEP DINH† AND KRZYSZTOF KURDYKA‡

where A = w ◦ ∇hf ◦ u. It is clear that u−1(Vf ∩ Ux) = {y1 = y2 = 0} ∩ Ux1 and
that

||A(y)|| = ||(y1, y2)|| = dist(y, V1f) (12)

where dist(., V1f) is the distance to V1f with respect to the standard metric on
R4. Since u and w are diffeomorphism (defined on the convex sets), they are bi-
Lipschitz, i.e., u, v and u−1, v−1 are Lipschitz. Hence, by (12), there exist some
constants 0 < Cx1 ≤ Cx2 < +∞ such that for all z ∈ Ux, we have

Cx1 dVf (z) ≤ ||∇hf(z)|| ≤ Cx2 dVf (z). (13)

By compactness of B ∩ Vf , we can find a finite cover of B ∩ Vf by some open sets
Uxi , i = 1, . . . , k, such that (13) holds in each Uxi . Note that there exists r > 0

such that for all z ∈ B̃ = B −
⋃
i

Uxi , we have dVf (z) ≥ r, so let

C̃1 = min
B̃

||∇hf ||
dVf

, C̃2 = max
B̃

||∇hf ||
dVf

.

Then

C̃1dVf (z) ≤ ||∇hf(z)|| ≤ C̃2dVf (z)

for all z ∈ B̃. Finally, let

C1 = min{Cx1
1 , . . . , Cxk1 , C̃1}, C2 = max{Cx1

2 , . . . , Cxk2 , C̃2}.

Then for all z ∈ B, we have

C1dVf (z) ≤ ||∇hf(z)|| ≤ C2dVf (z).

The lemma is proved. �

Recall that gSR = dx2
1 + dx2

2 is a sub-Riemannian metric on ∆. Let δSR =
d2
Vf
gSR. Note that the metrics δSR depends on the polynomial f . Moreover, it is

degenerate on Vf .
Let << ., . >> and ||.|| denote respectively the scalar product and the norm for

the metric gSR, let < ., . > and |.| denote respectively the scalar product and the
norm for the metric δSR. For a horizontal curve α : (t1, t2) → R4, its length with
respect to gSR and δSR, denoted respectively by lg(α(t)) and lδ(α(t)) are given by
the following formulas.

lg(α(t)) =

∫ T

0

||α̇(t)||α(t)dt, (14)

lδ(α(t)) =

∫ T

0

|α̇(t)|α(t)dt

=

∫ T

0

dVf (α(t))||α̇(t)||α(t)dt.

(15)

The horizontal gradient for the metric δSR can be computed from the one for
the metric gSR, this is given by the following lemma.

Lemma 5.3. Let δ∇f = (u1, u2, u3, u4) and δ∇hf = (u1, u2), be respectively the
gradient and the horizontal gradient of f with respect to the metric δ := δSR+ω2

3+ω2
4

where ω3 = dx3 − x1dx2, ω4 = dx4 − x3dx2. Then, in the coordinate system
{X1, X2, X3, X4}, we have
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 ui =
Xif

d2
Vf

, (i = 1, 2)

ui = Xif, (i = 3, 4)

Which mean δ∇hf =
∇hf
d2
Vf

and |δ∇hf | = ||∇
hf ||
dVf

.

Proof. The proof is similar to the proof of Lemma 5.8 in [8]. �

The following lemma is similar to Theorem 5.10 in [8].

Lemma 5.4. Let α : (t1, t2)→ B is a trajectory of ∇hf . Then for the metric δ, the

length of α is bounded by
|f(α(t2))− f(α(t1))|

C1
where C1 is the constant (depended

on B) in the  Lojasiewicz inequality (11).

Proof. The proof is obtained by the same way as the proof of Theorem 5.10 in
[8]. �

The following property is similar to Proposition 5.1 in [8].

Proposition 5.5. If x(t) is not a constant trajectory of ∇hf , then
d

dt
(f(x(t))) > 0

which means that f is non constant on x(t). So the there are no closed trajectories
of ∇hf .

Proof. The proof is analogue to the proof of Proposition 5.1 in [8]. �

Now for a ∈ Vf −Γf , let U be an open neighborhood of a such that U ∩Γf = ∅,
let Y,Z be some open neighborhoods of 0 ∈ R2, let

ϕ : Y → Vf ∩ U
(y1, y2) 7→ ϕ(y1, y2)

be a smooth local parameterization of Vf at a such that ϕ(0) = a. Set

Φ : Y × R2 → U
y = (y1, y2, y3, y4) 7→ ϕ(y1, y2) + y3X1(ϕ(y1, y2)) + y4X2(ϕ(y1, y2))

We have the following lemma.

Lemma 5.6. The map Φ is a local diffeomorphism at 0 ∈ R4.

Proof. Note that (dΦ)0(R2×{0}) = {(dϕ)0(R2)}×{0} = TaVf×{0} and (dΦ)0({0}×
R2) = {0} ×∆a. On the other side, TaVf t ∆a since a 6∈ Γf . Hence (dΦ)0 is sur-
jective which implies that it is also bijective. The lemma follows. �

Remark 5.7. Let dist and distE be respectively the Riemannian distance with
respect to the metric g = dx2

1 + dx2
2 + ω2

3 + ω2
4 and the usual Euclidean metric gE

on R4. From the property that all scalar products on a finite dimensional vector
space are equivalent, it follows that dist and distE are equivalent on any compact
subset of R4.

Let 0 ∈ W ⊂ Y × Z such that W is compact and that Φ : W → Φ(W ) is a
diffeomorphism. Set

Ṽf := Φ−1(Vf ) ⊂ R2 × {0}.
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Then it is easy to check that

dVf (.)|Φ(W ) = distE(., Vf )|Φ(W )

∼ distE(., Ṽf )|W
= distE(., {y3 = y4 = 0})|W
=: dṼf (.)|W .

Let b ∈ Φ(W ) and set b̃ = Φ−1(b). Now set B(b̃, R) := {y ∈ R4 : |yi− b̃i| ≤ R} ⊂
W , then BΦ(b, R) := Φ(B(b̃, R)) is a closed neighborhood of b.

The following lemma is the key to prove the existence of the limits of the trajec-
tories of ∇hf.

Lemma 5.8. Let f ∈Md ∩Ad ∩Dd ∩ Ld, we have the following.

(I) Let α : [t1, t2] → BΦ(b, R) be a horizontal curve such that α(t1) = b and
α(t2) ∈ ∂BΦ(b, R). Then lδ(α(t)) > Cb,R > 0 where Cb,R does not depend
on α.

(II) For each p ∈ ∂BΦ(a,
R

2
) and for any horizontal curve α : [t1, t2]→ BΦ(a,R)−

B̊Φ(a,
R

2
) such that α(t1) = p and α(t2) ∈ ∂BΦ(a,R), we have lδ(α(t)) >

C ′a,R > 0 where C ′a,R does not depend on α.

Proof. (I) By compactness, it is sufficient to prove that lδ(α(t)) > 0 for such α(t).
Set q := α(t2) and q̃ := Φ−1(q) = (q̃1, q̃2, q̃3, q̃4). We have four cases to consider:

(i) b 6∈ Vf ;

(ii) b ∈ Vf and |q̃3 − b̃3| = R or |q̃4 − b̃4| = R;

(iii) b ∈ Vf , |q̃3 − b̃3| < R and |q̃4 − b̃4| < R.

Claim 5.9. We have lg(α(t)) ≥ cR where c is a positive constant.

Proof. By Lemma 5.6, Φ is a diffeomorphism, hence it is bi-Lipschitz, so by Remark
5.7, we get

lg(α(t)) ≥ dist(b, q) ∼ distE(b, q) ∼ distE(b̃, q̃) ≥ R.
�

We need first the following claim whose proof follows easily from Claim 5.9 and
the formulas (14), (15).

Claim 5.10. If dVf (α(t)) ≥ r > 0, then lδ(α(t)) ≥ rlg(α(t)) ≥ crR.

Now consider case (i). Set 2r := dVf (b) > 0. If dVf (α(t)) > r for all t ∈ [t1, t2],
then by Claim 5.10, it follows that

lδ(α(t)) ≥ crR > 0.

Otherwise, there exists t0 ∈ (t1, t2] such that dVf (α(t0)) = r and dVf (α(t)) > r for
t ∈ [t1, t0]. Then

lδ(α(t)) ≥ lδ(α(t)|[t1,t0])
≥ rlg(α(t)|[t1,t0])
≥ rdist(b, α(t0))
∼ rdistE(b, α(t0))
≥ r2 > 0

Next, for case (ii), by the assumptions, we have

distE(q̃, {y3 = y4 = 0} ≥ R.
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Hence

R ≤ distE(q̃, Ṽf ) ∼ distE(q, Vf ) = dVf (q)

which means that there is r′ > 0 such that dVf (q) ≥ 2r′. By applying the arguments
as in the case (i), it follows that lδ(α(t)) > 0.

Let us consider the case (iii), since q ∈ ∂BΦ(b, R), we have q̃ ∈ ∂B(b̃, R). So

|q̃1 − b̃1| = R or |q̃2 − b̃2| = R. Let α̃(t) = Φ−1(α(t)). For y ∈W , set

∆̃y = dΦ−1(∆Φ(y)),

which defines a distribution ∆̃ on W . Let y ∈W and X,Y ∈ Ty∆̃y, the ”pullbacks”

g̃SR of gSR and δ̃SR of δSR on ∆̃ at y are given respectively by

g̃SR(X,Y ) := gSR(dyΦ(X), dyΦ(Y )),

δ̃SR(X,Y ) := δSR(dyΦ(X), dyΦ(Y )) = d2
Vf

(φ(y)).gSR(dyΦ(X), dyΦ(Y )).

Since all metrics on R2 are locally equivalent, by compactness, we have g̃SR(X,Y ) ∼
gE |∆̃. Moreover dVf ∼ dṼf . So

δ̃SR(X,Y ) ∼ d2
Ṽf
.gE |∆̃.

Denote by lδ̃(α̃(t)) the length of α̃(t) with respect to the metric δ̃SR. Then by this
observation, it is sufficient to prove that lδ̃(α̃(t)) > 0.

Without loss of generality, we may assume that α̃(t) is parametrized by its arc

length with respect to the metric gE , i.e., || ˙̃α(t)||E = 1 for t ∈ [t0, t2], where
||.||E denotes the Euclidean norm. Let ξ(t) be the orthogonal projection of α̃(t)

on Ṽf with respect to the Euclidean metric gE , so ξ̇(t) is the projection of ˙̃α(t)

on Tξ(t)Ṽf = R2 × {0}. Note that distE(ξ(t1), ξ(t2)) = distE(b̃, (q̃1, q̃2, 0, 0)) ≥ R.

Denote by G(2, 4) the Grassmannian space of 2−planes in R4, the distance between
two planes P,Q ∈ G(2, 4) is given by

ρ(P,Q) := max
p∈P,||p||=1

min
q∈Q
||p− q||E .

Since the map ∆̃ : R4 → G(2, 4), y 7→ ∆̃y is smooth, it is locally Lipschitz, so we
may suppose that for all x, y ∈W , we have

ρ(∆̃x, ∆̃y) ≤ K||x− y||E ,

where K is a positive constant. Hence for t ∈ [t0, t2],

ρ(∆̃α(t), ∆̃ξ(t)) ≤ K||α(t)− ξ(t)||E .

Let η̇(t) be the orthogonal projection of ˙̃α(t) on ∆̃ξ(t) ⊂ {0} × R2 with respect to

the Euclidean metric gE . Since ∆̃ξ(t) ⊥ Tξ(t)Ṽf , we have ˙̃α(t) = ξ̇(t) + η̇(t). So

||ξ̇(t)||E = || ˙̃α(t)− η̇(t)||E ≤ ρ(∆̃α̃(t), ∆̃ξ(t)) ≤ K||α̃(t)− ξ(t)||E ≤ KdṼf (α̃(t)).
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Consequently

lδ(α̃) =

∫ t2

t0

| ˙̃α(t)|dt

=

∫ t2

t0

dṼf (α̃(t))dt

≥ 1

K

∫ t2

t0

||ξ̇(t)||Edt

≥ 1

K
distE(ξ(t1), ξ(t2)) ≥ R.

This end the proof of (I). It is clear that (II) follows easily from (I). The lemma
follows. �

Now we have all the ingredients necessary to prove Theorem 5.1.

Proof of Theorem 5.1. Let f ∈Md∩Ad∩Dd∩Ld and let α(t) ⊂ B be a trajectory
of f in B, assume that α(t) is parametrized by the values of f . If α(t) does not
approach to Vf , then by the same arguments as Proposition 5.4 in [8], it follows
that α(t) has a limit on ∂B. So from now on, assume that α(t) approaches to Vf ,
i.e., there exists a sequence tm → t0 < +∞ such that

dVf (α(tm))→ 0.

Since α(t) is parametrized by the values of f , we have

distE(α(t), f−1(t0) ∩B)→ 0 when t→ t0,

where distE denotes the distance function to Vf with respect to the usual Euclidean
metric on R4. Thus

distE(α(t), Vf ∩ f−1(t0) ∩B)→ 0 when t→ t0. (16)

We need to prove that α(t) has only one accumulation point in Vf ∩f−1(t0)∩B. By
contradiction, assume that α(t) has two accumulation points a, a′ in Vf∩f−1(t0)∩B.

If a 6∈ Γf , then there are a local diffeomorphism Φ and a ”box” BΦ(a,R) satis-
fying the conclusions such that Lemma 5.8 holds. Then it is clear that for R small

enough, α(t)∩
(
BΦ(a,R)− B̊Φ(a, R2 )

)
contains infinity many components with one

end point in ∂BΦ(a,R) and another in ∂BΦ(a,
R

2
). According to Lemma 5.8, the

length of these components with respect to the metric δSR is bounded from below
by a positive constant, which implies that lδ(α(t)) = +∞. This contradicts Lemma
5.4.

If a′ ∈ Γf , by the same arguments, we get a contradiction. So suppose that a, a′ ∈
Γf . By Theorem 4.1, the intersection f−1(t0)∩Γf is finite, so let R be small enough
such that BΦ(a,R)∩ f−1(t0)∩Γf = {a}. Since α(t) accumulates to a, it intersects
∂BΦ(a,R) infinitely many times. By compactness, the set ∂BΦ(a,R)∩α(t) has an
accumulation point, denoted by a1. By (16), it is clear that a1 ∈ f−1(t0). Hence
a1 6∈ Γf . By the same arguments as above, we get again a contradiction. So we
have proved f ∈ Nd, where Nd is defined by (9). This ends the proof of Theorem
5.1. �
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